Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Parametric Study of HCCI Combustion - the Sources of Emissions at Low Loads and the Effects of GDI Fuel Injection

2003-03-03
2003-01-0752
A combined experimental and modeling study has been conducted to investigate the sources of CO and HC emissions (and the associated combustion inefficiencies) at low-loads. Engine performance and emissions were evaluated as fueling was reduced from knocking conditions to very low loads (ϕ = 0.28 - 0.04) for a variety of operating conditions, including: various intake temperatures, engine speeds, compression ratios, and a comparison of fully premixed and GDI (gasoline-type direct injection) fueling. The experiments were conducted in a single-cylinder engine (0.98 liters) using iso-octane as the fuel. Comparative computations were made using a single-zone model with the full chemistry mechanisms for iso-octane, to determine the expected behavior of the bulk-gases for the limiting case of no heat transfer, crevices, or charge inhomogeneities.
Technical Paper

A Multi-Zone Model for Prediction of HCCI Combustion and Emissions

2000-03-06
2000-01-0327
Homogeneous Charge Compression Ignition (HCCI) combustion is a process dominated by chemical kinetics of the fuel-air mixture. The hottest part of the mixture ignites first, and compresses the rest of the charge, which then ignites after a short time lag. Crevices and boundary layers generally remain too cold to react, and result in substantial hydrocarbon and carbon monoxide emissions. Turbulence has little effect on HCCI combustion, and may be most important as a factor in determining temperature gradients and boundary layer thickness inside the cylinder. The importance of thermal gradients inside the cylinder makes it necessary to use an integrated fluid mechanics-chemical kinetics code for accurate predictions of HCCI combustion. However, the use of a fluid mechanics code with detailed chemical kinetics is too computationally intensive for today's computers.
Journal Article

A Detailed Comparison of Emissions and Combustion Performance Between Optical and Metal Single-Cylinder Diesel Engines at Low Temperature Combustion Conditions

2008-04-14
2008-01-1066
A detailed comparison of cylinder pressure derived combustion performance and engine-out emissions is made between an all-metal single-cylinder light-duty diesel engine and a geometrically equivalent engine designed for optical accessibility. The metal and optically accessible single-cylinder engines have the same nominal geometry, including cylinder head, piston bowl shape and valve cutouts, bore, stroke, valve lift profiles, and fuel injection system. The bulk gas thermodynamic state near TDC and load of the two engines are closely matched by adjusting the optical engine intake mass flow and composition, intake temperature, and fueling rate for a highly dilute, low temperature combustion (LTC) operating condition with an intake O2 concentration of 9%. Subsequent start of injection (SOI) sweeps compare the emissions trends of UHC, CO, NOx, and soot, as well as ignition delay and fuel consumption.
Technical Paper

A Conceptual Model of DI Diesel Combustion Based on Laser-Sheet Imaging*

1997-02-24
970873
A phenomenological description, or “conceptual model,” of how direct-injection (DI) diesel combustion occurs has been derived from laser-sheet imaging and other recent optical data. To provide background, the most relevant of the recent imaging data of the author and co-workers are presented and discussed, as are the relationships between the various imaging measurements. Where appropriate, other supporting data from the literature is also discussed. Then, this combined information is summarized in a series of idealized schematics that depict the combustion process for a typical, modern-diesel-engine condition. The schematics incorporate virtually all of the information provided by our recent imaging data including: liquid- and vapor-fuel zones, fuel/air mixing, autoignition, reaction zones, and soot distributions.
Technical Paper

A Computational Study of the Effects of Low Fuel Loading and EGR on Heat Release Rates and Combustion Limits in HCCI Engines

2002-03-04
2002-01-1309
Two fundamental aspects of HCCI engine combustion have been investigated using a single-zone model with time-varying compression and the full chemical-kinetic mechanisms for iso-octane, a representative liquid-phase fuel. This approach allows effects of the kinetics and thermodynamics to be isolated and evaluated in a well-characterized manner, providing an understanding of the selected fundamental processes. The computations were made using the CHEMKIN-III kinetic-rate code for an 1800 rpm operating condition. The study consists of two parts. First, low-load HCCI operation was investigated to determine the role of bulk-gas reactions as a source for HC and CO emissions. The computations show that as fueling is reduced to equivalence ratios of 0.15 and lower (very light load and idle), the bulk-gas reactions do not go to completion, leading to inefficient combustion and high emissions of HC and CO.
X